Role of Brucite Dissolution in Calcium Carbonate Precipitation from Artificial and Natural Seawaters

Dan Nguyen Dang,†§ Stéphanie Gascoin,‡ Alaric Zanibellato,§ Cosmelina G. Da Silva,†‡ Mélanie Lemoine,† Benoît Riffault,‡ René Sabot,§ Marc Jeannin,§ Daniel Chatéigner,† and Otavio Gil†

†Normandie Université, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
‡Normandie Université, ENSCAEN, UNICAEN, CNRS, CRISMAT, 14000 Caen, France
§Université de La Rochelle, CNRS, LaSIE, 17000 La Rochelle, France

ABSTRACT: Brucite is often associated with calcium carbonate in calcareous scales. In this study, we focus on the effects of brucite dissolution on the carbonate precipitation. Brucite-saturated solutions are elaborated by adding the same amount of brucite powder in various volumes of different natural and artificial seawaters (natural organic materials are also added, with or without Mg2+ ions). The Mg2+ and Ca2+ concentrations in seawater at the beginning and end of the experiments are determined by ICP-AES. The solid powders are ex-situ analyzed using XRD and SEM. It is observed that brucite dissolution leads to pH increase and enrichment of seawaters in magnesium ions. The Mg2+ ions, either pre-existing in the solution or added from brucite dissolution play a key role in CaCO3 polymorph selection. In order to separate the Mg2+ and OH− effects, CaCO3 precipitation is induced by NaOH addition in artificial seawater with or without Mg2+. Under both NaOH and Mg(OH)2 addition, only aragonite is precipitated from artificial and natural seawaters in our conditions. NaOH addition in Mg-free seawater allows us to predominantly obtain vaterite or calcite polymorphs, while both aragonite and calcite precipitates are observed from Mg-free seawater when NaOH is replaced by Mg(OH)2. Natural organic materials added in artificial seawater have a significant effect on aragonite morphology.

INTRODUCTION

Calcium carbonate plays a fundamental role in marine ecosystems. It is an important and usually one of the dominant minerals in marine sediments. The mechanisms of CaCO3 formation in both aqueous solution and seawaters have been studied by numerous authors. The rate of calcium carbonate formation in solution increases with temperature, which implies that its solubility decreases. The most important calcium carbonate polymorphs in seawater are aragonite and calcite. Other phases (i.e., vaterite, hydrated CaCO3) are far less abundant and of much lower importance, except for particular cases corresponding to biomineralization processes. High ion concentrations, or the presence of microorganisms, may play a role as precipitation nuclei, are coated by humic compounds or dissolved phosphate.

Magnesium plays a key role in calcite–aragonite polymorph selection. The role of magnesium in the crystal growth of calcite and aragonite from seawater has been studied for a long time. Berner concluded that dissolved magnesium in seawater has a strong retarding effect on calcite crystal growth rate but no effect on that of aragonite. The inhibition effect of Mg2+ on calcite growth rate is due to its incorporation within the crystal structure, resulting in the considerably more soluble magnesian calcite (Mg-calcite). However, a recent study of Sun and co-workers shows that the increased solubility of Mg-calcite has negligible impact on nucleation rates, and the inhibition of calcite nucleation upon Mg2+ uptake is primarily due to an increase in surface energy.

A tremendous amount of work has been dedicated to the understanding of CaCO3 biomineralization. The mollusk shell is a product of biomineralization of CaCO3 crystals. Nacre is a composite consisting of aragonite pseudohexagonal crystals embedded in an organic matrix. This biomaterial is biocompatible and is known to have some osteogenic effect in
Crystal Growth & Design

Article

thermodynamically stable product of serpentinization in hydro-
in calcareous scales depend strongly on the applied potentials.
Southern Mariana Forearc has indicated that it consists mostly
the serpentinite-hosted Lost City hydrothermal
Pinctada margaritifera protection of metals in seawater are reported to consist of mainly
saturation conditions obtained by an increase of carbonate
always associated with that of brucite (Mg(OH)2), forming a
seawater electrolysis, in which calcium carbonate precipitation is
particularly be induced by technological processes involving
basic carbonic equilibrium in seawater. This phenomenon can
9.32 elsewhere, was added to ASW in order to reach a concentration of
the nacre of Pinctada margaritifera morphology, is also mentioned. Finally, the vaterite
dissolution in CaCO3 precipitation from seawaters. The e
brucite dissolution on carbonate calcium precipitation from
chemistry have focused on its precipitation and dissolution
of brucite and aragonite. Many studies of brucite surface
differentiation and mineralization of damaged bone tissue.

EXPERIMENTAL SECTION

Four different seawater solutions were prepared.
NSW. Natural seawater (pH ≈ 8) was taken at the marine station of
Luc-sur-Mer (France) where it was pumped directly from the English
Channel and decanted to remove large-particle sediments.
ASW. Artificial seawater was prepared on the basis of the six main
compounds present in the D1141-98 standard. The composition is
NaCl, 0.42 mol dm−3; Na2SO4, 2.88 × 10−2 mol dm−3; CaCl2·2H2O,
1.05 × 10−2 mol dm−3; MgCl2·6H2O, 5.46 × 10−2 mol dm−3; KCl,
9.32 × 10−3 mol dm−3; and NaHCO3, 2.79 × 10−3 mol dm−3. To avoid
precipitation of CaCO3 and Na2CO3 while combining the constituents of
ASW, we prepared it in two separate containers. In the first container, we
prepared a solution containing NaCl, Na2SO4, KCl, and NaHCO3
souls, while in the other, the desired amounts of CaCl2·2H2O
and MgCl2·6H2O were dissolved. After the salts in the two solutions were
completely dissolved in pure water, they were carefully combined while
stirring. The pH of the solutions was sometimes adjusted to ~8 with a
few drops of 0.1 M NaOH (to reach a similar pH to natural seawater of
the English Channel).

ASW + WSM. Water-soluble organic matrix (WSM), extracted from the
nacre of Pinctada margaritifera using a methodology described
elsewhere, was added to ASW in order to reach a concentration of
100 mg of WSM/dm3 of ASW.

ASW − Mg2+. ASW to which no magnesium salt was added was
prepared. In this, the ionic strength deficiency was compensated by
addition of an excess of NaCl. The composition is NaCl, 0.53 mol cm−3;
Na2SO4, 2.88 × 10−2 mol dm−3; CaCl2·2H2O, 1.05 × 10−2 mol dm−3;
KCl, 9.32 × 10−3 mol dm−3; and NaHCO3, 2.79 × 10−3 mol dm−3.

Precipitation Experiments. The experiments were carried out by adding the same amount (1 g) of brucite powder (Alfa Aesar 95–
100.5%) in different volumes (50, 200, 500, and 900 cm3) of the four
seawaters. This brucite amount generates in any case brucite-saturated
solutions at equilibrium conditions. The chemical speciation of the
solutions was determined using the PHREEQC computer program. More
details of speciation calculations can be found in the Supporting
Information.

In order to determine Mg2+ and Ca2+ concentrations, the solutions were analyzed by ICP-AES (inductively coupled plasma-atomic
emission spectrometry, Varian, Vista MPX) at the beginning and at the
end of the experiments. The evolution of Mg2+ and Ca2+ concentrations
in aqueous phase permitted determination of the quantities of dissolved Mg(OH)2, MgHCO3, and precipitated CaCO3, mprec-CaCO3;

mprec-CaCO3 = ([Ca2+]f − [Ca2+]s) VMg(OH)2

(1)

where [Ca2+]f and [Ca2+]s are the Mg2+ and Ca2+ concentrations at the
end of the experiments, [Mg2+]s and [Ca2+]s are the Mg2+ and Ca2+
concentrations at the beginning of the experiments, V is the seawater
volume, and Mmg(OH)2 and Mm(CaCO3) are the molar masses of Mg(OH)2
and CaCO3.

The total solid mass variation at the end of the experiment, Δm, was
calculated using the following formula:

Δm = mprec-CaCO3 + mMg(OH)2

(3)

In order to understand the role of pH and Mg2+ concentration on
CaCO3 precipitation from seawaters, other experiments were also
 carried out by gradually adding a NaOH solution in 900 mL of ASW or
ASW − Mg2+ solutions to reach a pH of 9.4 or 10.3, respectively.
These pH values have been chosen based on the values obtained at the
end of the experiments of brucite dissolution in the seawaters.

The pH was measured with a Cyberscan pH510 from Eutech
Instruments. Low, continuous solution agitation was maintained
using magnetic stirring. All experiments were carried out at ambient
temperature (20 ± 1 °C) and were performed in an open reactor
during 24 h for the volumes 20, 200, and 500 cm3 and 72 h for the
900 cm3 solution.

Precipitated powders obtained at the end of these experiments were
filtered, washed with ultrapure water to remove the soluble salts
(in particular NaCl), and dried before X-ray diffraction (XRD) and
scanning electron microscopy (SEM, Carl Zeiss S500 instrument)
experiments. X-ray powder diffraction data were collected using a D8
Advance Vario 1 Bruker two-circle diffractometer (θ/2θ Bragg–
Brentano mode) using the monochromatized Cu Kr radiation (λ =
1.540598 Å) and the Lynx Eye detector. Data were collected over the
angular range 5° ≤ 2θ ≤ 120° at room temperature counting for 0.8 s
at each angular increment of 0.0105° (10 h/scan). XRD patterns analyzed
using the combined analysis methodology allow the quantitative
determination of phase fractions.

RESULTS AND DISCUSSION

pH Evolution. In a preliminary test, brucite powder is added to
stirred ultrapure water. The test is operated in a closed
reactor to avoid CO2(g) dissolution and MgCO3 or relevant phase
precipitation. The pH increases abruptly to 10.3 ± 0.1 in just a
few minutes and remains stable for the total duration of experiments.
This pH is similar to the value numerically determined using the
PHREEQC computer program (Table S1 of the Supporting
Information). The pH increase is due to the brucite solubility
(solubility product pKsp = 10.5 ± 0.2 at 25 °C) and
relatively fast dissolution kinetics.

Mg(OH)2 = Mg2+ + 2OH−

(r1)
Dissolution of the brucite powder in NSW, ASW, and ASW + WSM solutions (initial pH ≈ 8) results in a rapid increase in pH to 9.4 ± 0.1 after a few minutes. These pH values remain almost stable until the end of the tests (24 h for V = 50, 200, and 500 cm³ and 72 h for V = 900 cm³). Figure 1 shows the final pH values obtained at the end of the experiments. These measured pH values are consistent with the values simulated using PHREEQC (Table S1 and Figure S1 of the Supporting Information). A slight pH difference is observed among different volumes for the same seawater or among different seawaters but smaller than the measured pH standard deviation (±0.1). The difference between the pH obtained in the ultrapure water (≈10.3) and seawaters (≈9.4) can be partially explained by the pre-existence of Mg²⁺ ions in seawaters (≈1300 mg·cm⁻³), which reduced the OH⁻ concentration according to the displacement of brucite dissolution equilibrium (reaction r1).

This remark is consistent with the pH ≈ 10.3 experimentally reached in the ASW − Mg²⁺ solution during the first 6 h. This value is similar to that obtained for the case of brucite dissolution in ultrapure water. Indeed, the absence of Mg²⁺ ions favors the equilibrium displacement in the direction of the dissolution and thus to a higher release of OH⁻. However, after 6 h of experiment, the pH begins to decrease slightly and reaches ~9.8 at the end of the tests. This pH decrease (that is not previously observed in ultrapure water) suggests that the buffer effect of seawater also played an important role. The reaction rate between HCO₃⁻ and CO₃²⁻ in the ASW − Mg²⁺ solutions (reaction r2), which is slower than that of brucite dissolution, leads to a slight and progressive decrease of pH and reaches ~9.8 at the end of the tests. Dreybrodt et al. have found that the precipitation kinetics of calcite is controlled by the slow kinetics of the overall reaction \(\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{HCO}_3^- + \text{H}^+ \). PHREEQC modeling of brucite dissolution equilibrium indicates that the pH obtained in ASW − Mg²⁺ solution (10.13) is slightly lower than the one reached in pure water (10.37). This difference confirms the role of the HCO₃⁻/CO₃²⁻ equilibrium in the ASW − Mg²⁺ solution.

\[
\text{HCO}_3^- + \text{OH}^- \rightleftharpoons \text{CO}_3^{2-} + \text{H}_2\text{O} \tag{r2}
\]

\[
\text{Ca}^{2+} + \text{CO}_3^{2-} \rightleftharpoons \text{CaCO}_3 \tag{r3}
\]

Thus, the higher pH in ASW − Mg²⁺ solutions allows us to suggest that the amount of brucite dissolved in this solution is more important than that in other seawaters. Mass evolution (calculated form ICP-AES) and XRD results hereafter will allow validation of this hypothesis.

Mass Evolution. The quantities of dissolved brucite and precipitated calcium carbonate and the total mass variation, \(\Delta m \), are determined based on the ICP-AES analysis (Figure 2).

It can be seen that \(\Delta m \) evolves (Figure 2a) roughly linearly with the initial volume of seawaters and is coherent with the final pH values (Figure 1). The increase of experiment time from 24 to 72 h seems to have minor effect on the solid mass evolution. These \(\Delta m \) variations result from the competition between brucite dissolution (Figure 2b) and calcium carbonate precipitation induced by the pH change (Figure 2c). It is important to note that only Mg(OH)₂ and CaCO₃ (calcite and aragonite polymorphs) are found by SEM and XRD analysis (detailed in next section), other numerically supersaturated phases (e.g., magnesite, dolomite, or relevant phases, Table S1 and Figure S1) are not experimentally detected. Figure 2b indicates that \(m_{\text{diss-Mg(OH)}_2} \) is similar in natural and artificial seawaters with or...
without WSM from Pinctada margaritifera. This nacre’s WSM contains mainly two amino acids, glycine (42.5 wt %) and alanine (21.4 wt %), and HCO₃⁻ (20 wt %). The amino groups of amino acids (glycine pKₐ 9.87; alanine pKₐ 9.78) and bicarbonate ions might participate to buffer effects in seawater and seem to modify the amount of dissolved brucite (Figure 2b) and the final pH (Figure 1). However, this study is not detailed enough to conclude on the effects of this specific WSM on brucite dissolution. The amount of brucite dissolved via reaction r1 depends strongly on the pre-existing Mg²⁺ ions. The lower the pre-existing Mg²⁺ ions present, the higher the brucite dissolved (Figure 2b). Thus, the highest m_{calcite-Mg(OH)₂} and the highest pH are observed in ASW — Mg²⁺ solutions (Figure 1). The initial Mg²⁺ concentration, before adding brucite, obtained in ASW (with Mg²⁺). This result suggests that the pH of the reaction r1 depends strongly on the pre-existing Mg²⁺ ions. On the other hand, the WSM added in ASW significantly affects the CaCO₃ precipitation (Figure 2c): \(m_{calcite-CaCO₃}^{ASW+WSM} > (m_{calcite-CaCO₃}^{ASW}) \). The larger amount of precipitated CaCO₃ in the ASW + WSM solution might be partially explained by the presence of HCO₃⁻ in WSM (about 20 wt %). The WSM addition leads to a weak increase of [HCO₃⁻] in the ASW + WSM solution. Therefore, \(\Delta m \) exhibits its largest values in the ASW + WSM solutions (Figure 2a). The lowest \(\Delta m \) obtained from NSW is the result of the smallest amount of CaCO₃ precipitated because of the presence of soluble organic matter (i.e., humic compounds) and phosphate. The lack of these organic matters in the artificial seawaters might be the origin of the larger amount of precipitated CaCO₃ (Figure 2c) and \(\Delta m \) (Figure 2a) in these solutions. We also see in Figure 2c that CaCO₃ precipitation is the largest in the ASW — Mg²⁺ (and in ASW + WSM) solution. The amount of CaCO₃ precipitated in ASW — Mg²⁺ (without Mg²⁺) is larger than that obtained in ASW (with Mg²⁺). This result suggests that the pH of the solution (controlled by brucite dissolution) has a significant effect on the rate of CaCO₃ precipitation (r3). So, the \(\Delta m \) obtained from ASW — Mg²⁺ (without magnesium ions) is larger than that from the ASW solution (containing Mg²⁺). Many studies have focused on the role of magnesium ions on CaCO₃ crystal growth in seawaters. Berner has found that magnesium ions at seawater concentration levels appear to have no effect on the rate of crystal growth of aragonite but a strong retarding effect on that of calcite. In agreement with many previous results from literature, it can be observed from XRD and SEM analysis hereafter that both calcite and aragonite polymorphs precipitate after brucite dissolution in ASW — Mg²⁺ solution in which no Mg ions pre-existed.

In this study, the excessive amount of brucite powder has been chosen hoping that Ca²⁺ in the seawaters could totally react to form solid CaCO₃. Then, we assume that \(m_{calcite-CaCO₃}^{calc} = m_{calcite-CaCO₃}^{calc} - [Ca²⁺] \), where \(m_{calcite-CaCO₃}^{calc} \) is the number of moles of Ca²⁺ ions present in the seawaters. However, the number of moles of HCO₃⁻ ions, \(n_{HCO₃⁻} \), in seawaters is lower than that of Ca²⁺ and the amount of precipitated CaCO₃ should be controlled by the initial HCO₃⁻ concentration (with the assumption that HCO₃⁻ is the main carbonate form present in the seawaters). Consequently \(m_{calcite-CaCO₃}^{calc} = n_{HCO₃⁻} M_{CaCO₃} \). Figure 3 shows a comparison between experimental mass, \(m_{calcite-CaCO₃}^{exp} \), and the maximum amount, \(m_{calcite-CaCO₃}^{calc} \), calculated from the initial [Ca²⁺] concentration or the \(m_{calcite-CaCO₃}^{calc} \), calculated from the initial [HCO₃⁻] concentration in the seawaters.

It can be seen that the amounts of precipitated CaCO₃ are partially controlled by [HCO₃⁻] in the seawaters: \(m_{calcite-CaCO₃}^{calc} < m_{calcite-CaCO₃}^{calc} \). Furthermore, \(m_{calcite-CaCO₃}^{exp} \) precipitated in ASW + WSM (Figure 3c) and ASW — Mg²⁺ (Figure 3d) are slightly larger than those calculated from HCO₃⁻ content of seawaters (and of WSM). This phenomenon is also found in ASW and NSW solutions (Figure 3a,b) when the lowest seawater volumes are used (i.e., 50 or 200 cm³). These results suggest that the increase of seawater pH due to brucite dissolution facilitates atmospheric CO₂(g) absorption into the seawaters via the following equilibria:

\[CO₂(g) \rightleftharpoons CO₂(aq) \]

Figure 3. Evolution of experimentally precipitated mass of CaCO₃, \(m_{calcite-CaCO₃}^{exp} \), of calculated mass, \(m_{calcite-CaCO₃}^{calc} \), of dissolved brucite \(m_{calcite-Mg(OH)₂} \), and \(m_{calcite-CaCO₃}^{calc} \), as a function of initial seawater volumes: (a) NSW; (b) ASW; (c) ASW + WSM; (d) ASW — Mg²⁺ (logarithmic scale graphs).
\[\text{CO}_2(aq) + 2\text{H}_2\text{O} = \text{HCO}_3^- + \text{H}_4\text{O}^+ \] (5)
\[\text{H}_3\text{O}^+ + 2\text{OH}^- = 2\text{H}_2\text{O} \] (6)

Then, the equilibrium displacement from \(\text{CO}_2(g) \) to \(\text{CO}_3^{2-} \) allows an increase in \(\text{CaCO}_3 \) amount. Brucite dissolution in the seawaters favors \(\text{CaCO}_3 \) formation and can be imagined as a complementary ecological option for carbon dioxide sequestration, for instance, in artificial carbonate reef formations. Of course, further studies should be carried out before this aspect may be applied.

CaCO\(_3\) Polymorphs after Mg(OH)\(_2\) Dissolution. Results obtained from ICP-AES show that the Mg/Ca molar ratios are initially around 5 for the NSW, ASW, and ASW + WSM solutions (Figure 4). The brucite dissolution and calcium carbonate precipitation lead to strong increases of Mg/Ca ratios. XRD patterns of the powders obtained after brucite dissolution in the seawaters are shown in Figure 5. They indicate that the brucite dissolution and calcium carbonate precipitation lead to strong increases of Mg/Ca ratios. XRD patterns of the powders obtained after brucite dissolution in the seawaters are shown in Figure 5. They indicate that the brucite and CaCO\(_3\) polymorph weight percent have been quantitatively determined by treating the X-ray patterns within the Rietveld-based software MAUD. This result suggests that the CO\(_2(g)\) absorption rate into the seawaters is the largest, and consequently also the precipitation rate of CaCO\(_3\), when seawater volumes are small (the same brucite powder mass is used for all seawater volumes). We also remark that Mg/Ca ratios are the largest in artificial seawater containing WSM. It might be partially explained by the presence of HCO\(_3^-\) in WSM (about 20 wt % of WSM) but also by the role of WSM (seeds) in accelerating the CaCO\(_3\) precipitation or CO\(_2(g)\) absorption.

The brucite and CaCO\(_3\) polymorph weight percent have been quantitatively determined by treating the X-ray patterns within the Rietveld-based software MAUD. This result suggests that the CO\(_2(g)\) absorption rate into the seawaters is the largest, and consequently also the precipitation rate of CaCO\(_3\), when seawater volumes are small (the same brucite powder mass is used for all seawater volumes). We also remark that Mg/Ca ratios are the largest in artificial seawater containing WSM. It might be partially explained by the presence of HCO\(_3^-\) in WSM (about 20 wt % of WSM) but also by the role of WSM (seeds) in accelerating the CaCO\(_3\) precipitation or CO\(_2(g)\) absorption.

![Figure 4](image1.png)

Figure 4. Mg/Ca molar ratios in the different seawater solutions at the beginning (before adding brucite) and at the end of the brucite dissolution experiments (24 h for \(V = 50, 200, \) and 500 cm\(^3\) and 72 h for \(V = 900 \text{ cm}^3 \)).

![Figure 5](image2.png)

Figure 5. XRD powder patterns of brucite and powders obtained from NSW and ASW solutions (a) and ASW + WSM and ASW – Mg\(^{2+}\) solutions (b) at the end of the brucite dissolution experiments. A = aragonite; C = calcite; B = brucite.

![Figure 6](image3.png)

Figure 6. Evolution of CaCO\(_3\) wt % in the solid powders obtained at the end of brucite dissolution experiments as a function of initial seawater volumes (aragonite, open bars; calcite, gray-filled bars; brucite, complement to 100 wt %).
presence of SO$_4^{2-}$ ions. Therefore, these ions inhibit calcite growth with magnitudes SO$_4^{2-} \ll$ Mg$^{2+} <$ MgSO$_4$. Sun et al.21 have numerically predicted that using Mg/Ca seawater ratios around 5, aragonite nucleates up to 10 orders of magnitude more frequently than calcite. The inhibition of calcite nucleation upon Mg$^{2+}$ uptake is primarily due to an increase in surface energy of its crystals, from 0.21 J/m2 for pure calcite to 0.35 J/m2 at the equilibrium of Mg(7\%)-calcite, this latter surface energy being larger than that of aragonite (0.28 J/m2) in seawater. Therefore, the surface energy favors a kinetic preference for aragonite nucleation in such conditions. However, aragonite does not accept Mg$^{2+}$ incorporation into its structure at any Mg/Ca ratio, because of a much too large enthalpy of Mg-aragonite formation.

Many studies cited in the review paper of Morse et al.1 have observed that Mg/Ca ratios in the range of 1 or 2 sets an effective boundary for polymorph selection between aragonite and magnesian-calcite, whereas a Mg/Ca > 2 promotes aragonite. This empirical observation was also successfully confirmed by numerical prediction.21 Falini et al.20 studied the role of Mg$^{2+}$ ions on the precipitation of CaCO$_3$ phases by adding Mg$^{2+}$ ions in the mixture of two solutions of CaCl$_2$ and Na$_2$CO$_3$ for 5 days and found that the presence at low concentration of Mg$^{2+}$ ions, Mg/Ca $= 1$ or 2, promoted the precipitation of magnesian-calcite; aragonite and magnesian-calcite were precipitated with Mg/Ca $= 3$; aragonite, magnesian-calcite, and monohydrocalcite precipitated with Mg/Ca $= 5$; the precipitation of monohydrocalcite or relevant metastable phases might be monitored by in situ methods (e.g., IR or Raman spectroscopies) in future studies.

In artificial seawater without Mg$^{2+}$ (ASW -- Mg$^{2+}$), the Mg/Ca ratio at the end of the experiment is lower than 2 (Figure 4), and X-ray diffraction (Figure 5) shows that both Mg-calcite and aragonite are found in the final powders. The Mg-calcite/ aragonite ratios are about 50:50 (Figure 6), increasing for larger solution volumes. At the first times upon incorporation of brucite into the solution, the local Mg/Ca ratio is not homogeneously distributed, resulting in calcite precipitation at Mg$^{2+}$-deficient locations in the volume and aragonite precipitation elsewhere. After homogenization, the remaining Ca$^{2+}$ ions serve aragonite precipitation, as in our usual seawater conditions. Consequently, at larger solution volumes (900 cm3) and for a fixed brucite amount (1 g) added to the solution, the relative calcite ratio in the precipitate decreases. We hypothesize that the local Mg/Ca ratio on nucleation sites is controlled by ion diffusion transport34 and might be quite different from the average ratio of the bulk solution. This local ratio varies with dissolving brucite and CaCO$_3$ precipitation. Hövelmann et al.34 suggested that the carbonation reaction is locally diffusion-controlled and the carbonation nucleation predominantly occurred in areas of high brucite dissolution. The local Mg/Ca ratio might be initially lower and favors magnesian-calcite nucleation and growth.

Then, this ratio increases with the increase of Mg$^{2+}$ by brucite dissolution and the decrease of Ca$^{2+}$ by calcium carbonate precipitation (to a level larger than the average value of the bulk solution), resulting in aragonite formation. Moreover, the amount of precipitated CaCO$_3$ polymorphs in the ASW -- Mg$^{2+}$ is larger than those in the natural and artificial seawaters with pre-existing Mg$^{2+}$ ions. XRD results are coherent with pH values (Figure 1), solid mass variations (Figure 2), and Mg/Ca ratios (Figure 4).

Cell parameters refined from combined analysis of precipitated aragonite polymorph are shown in Table 1. They exhibit

| Table 1. Combined Analysis Results for Aragonite Precipitated after Brucite Dissolution in Seawaters (900 cm3)44 |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| | ASW -- Mg$^{2+}$ | ASW | ASW + WSM | NSW |
| a (Å) | 4.9618(3) | 4.9631(1) | 4.9632(1) | 4.9651(1) |
| b (Å) | 7.9678(3) | 7.9706(3) | 7.9714(3) | 7.9737(3) |
| c (Å) | 5.7477(3) | 5.7465(2) | 5.7470(2) | 5.7497(2) |
| $\Delta a/a$ | -0.06×10^{-4} | 2.56×10^{-4} | 2.76×10^{-4} | 6.59×10^{-4} |
| $\Delta b/b$ | -1.68×10^{-4} | 1.83×10^{-4} | 2.84×10^{-4} | 5.72×10^{-4} |
| $\Delta c/c$ | 7.75×10^{-4} | 6.36×10^{-4} | 7.23×10^{-4} | 1.19×10^{-3} |
| Ca | 0.4159(6) | 0.4141(2) | 0.4145(2) | 0.4138(3) |
| z | 0.7550(9) | 0.7583(4) | 0.7577(4) | 0.7582(4) |
| C_{r} | 0.775(3) | 0.772(1) | 0.766(1) | 0.773(1) |
| $O_{1\text{r}}$ | $-0.084(4)$ | $-0.083(2)$ | $-0.087(2)$ | $-0.081(2)$ |
| $O_{1\text{y}}$ | 0.922(2) | 0.9233(8) | 0.9228(8) | 0.9235(9) |
| z | $-0.093(2)$ | $-0.0902(8)$ | $-0.0929(8)$ | $-0.0883(8)$ |
| $O_{2\text{x}}$ | 0.485(2) | 0.4730(8) | 0.4754(8) | 0.4713(9) |
| y | 0.685(1) | 0.6814(5) | 0.6819(5) | 0.6815(6) |
| z | $-0.096(2)$ | $-0.0951(7)$ | $-0.0951(8)$ | $-0.0943(7)$ |
| $\Delta C_{\text{r}-\text{O}_{1\text{r}}}$ Å | 0.009 | 0.007 | 0.006 | 0.007 |
| χ | 2.68 | 2.52 | 2.40 | 2.49 |
| R_{c} (%) | 10.13 | 9.10 | 8.93 | 8.90 |
| R_{w} (%) | 7.81 | 7.08 | 6.86 | 6.98 |
| R_{exp} (%) | 3.77 | 3.62 | 3.72 | 3.57 |

44Parentheses are standard deviations on the last digit. Reliability factors from combined analysis: GoF, goodness-of-fit; R_{c}, weighted factor; R_{w}, Bragg factor; R_{exp}, expected factor; a, b, c, unit-cell parameters of the crystals; x, y, z, atomic fraction coordinates; $\Delta C_{\text{r}-\text{O}_{1\text{r}}}$ z coordinate of C--Z coordinate of O1. Unit-cell parameters and atomic coordinate references for the non-biogenic aragonite are from Caspi et al.59
cell distortions \((a, b, c)\) compared to nonbiogenic aragonite determined by Caspi et al.59 Such distortions exhibit slight anisotropy with the highest values in NSW and the lowest in ASW − Mg2+. Similar cell expansions are found in the artificial seawater with and without addition of WSM. No large modifications of cell parameters as observed in the literature on similar works and no large SEM grains shape modifications also observed by some authors could be observed by adding WSM in the ASW solution. The slight modifications of grain shapes when comparing ASW and ASW + WSM of our studies only poke for a tendency to resemble NSW-like conditions, which overall might be attributed to many components present in NSW other than WSM, as well as WSM itself. Consequently, WSM addition in ASW has no or minor effect on the cell parameters of aragonite. Only in the ASW − Mg2+ solution, the cell parameter contraction, in the \(a,b\) plane of aragonite, is found. However, these distortions are very low for all used seawaters if we compare with the cell parameters of biogenic aragonite of some mollusk shell species reported in the literature.60,61 The combined analysis of precipitated aragonite polymorph indicates that in NSW, the mean coherent domains (crystallites) of aragonite adopt a roughly cylindrical shape, 62 nm in height and 38 nm diameter, with the cylinder axis aligned with the \(c\)-axis of the crystal structure, while in ASW, the long axis of the mean crystallites drops down to 55 nm. Such shapes and sizes are not significantly modified under WSM addition in the solution, while long crystallites develop along the \([011]\) directions up to 170 nm in the absence of any Mg2+ cation in the initial solution. These microstructural observations again tend to reveal that WSM has only minor effects on the crystallinity of the precipitates, if any. Indeed if NSW, which always contains some parts of WSM due to dissolved bioorganisms, seems to favor slightly larger crystallites, addition of WSM in ASW shows slight but opposite behavior. WSM addition consequently seems to have very weak effects on both structural and microstructural characteristics of the crystals. Removal of initial Mg2+ cations tends to result in aragonite grains with larger coherent domain sizes. This might point toward a detrimental effect of Mg2+ also on aragonite and would merit further analysis but is beyond the scope of this work. Figure 7 shows typical SEM images of precipitated calcium carbonate polymorphs obtained from different seawaters (with \(V = 900 \, \text{cm}^3\)). Aragonite appears as aggregates formed by small needle-like crystals for all seawaters. Although XRD reveals less aragonite size and shape modification for crystals obtained from different seawaters, SEM images indicate that aragonite grain shapes and sizes depend strongly on the kind of seawater. The needle-like aragonite crystals are very thin and long in the NSW (Figure 7a) but thicker and shorter in the ASW (Figure 7b). WSM addition in ASW modifies the morphology of precipitated aragonite, such that needle-like aragonite crystals in ASW + WSM (Figure 7c) become similar to those in NSW. In the literature, the effect of WSM extracted from the nacre of the oyster \textit{Pinctada maxima} on the electrodeposited aragonite structure has been previously studied by Krauss.62 This author found a significant decrease of the needle-like aragonite crystal sizes with WSM addition. The effect of adding the proteins isolated from individual genera \textit{Rhynchonelliformea} was tested on CaCO\textsubscript{3} precipitation experiments, producing spectacular results in crystal morphology changes.28 In mollusk shells containing nacre layers, nacre’s WSM plays an important role in the macroscopic

Figure 7. SEM images of precipitates obtained at the end of brucite dissolution in 900 cm\(^3\) seawater experiments: (a) NSW; (b) ASW; (c) ASW + WSM; (d) ASW − Mg2+. Scale bars are 1 \(\mu\)m. A = aragonite; C = calcite; M = Mg-calcite.
Mg-calcite crystals formed in ASW of phase fractions in the precipitated CaCO₃ powders, in which addition. The XRD patterns allowed quantitative determination In this case, the pH of the solutions is readjusted through NaOH addition.

Although aragonite is found upon brucite dissolution in both seawaters, with or without initial Mg²⁺ ions, the aragonite crystals formed in ASW − Mg²⁺ are not similar to those precipitated in the ASW solution. This result suggests that the Mg²⁺ ions supplied by brucite dissolution (especially in ASW − Mg²⁺) and Mg²⁺ pre-existing in the seawater have different effects on the aragonite morphology. Consequently, the aragonite morphology is affected by the Mg/Ca ratio. Calcite and Mg-calcite are also precipitated in the ASW − Mg²⁺ solution (Figure 7d). The Mg-calcite crystals formed in ASW − Mg²⁺ look like imperfect rhombohedrons with cavities; new faces develop from the edges of “perfect” rhombohedral morphology calcite. It is important to note that abiogenic precipitation of pure (Mg-free) calcite is not observed in seawater. Marine calcite often contains variable amounts of Mg²⁺ generically termed magnesian calcite. Mucci and Morse suggested that larger Mg/Ca ratios in the solution result in larger incorporation of Mg²⁺ in calcite crystals, modifying crystal morphology.

CaCO₃ Polymorphs after NaOH Addition. In this section, we study calcium carbonate polymorph precipitation in ASW with and without Mg²⁺ using NaOH addition in order to examine OH⁻ effects not coming from brucite dissolution. Two NaOH solutions are used: a highly concentrated (15 M) solution to avoid dilution of the solutions and changes in the ionic strength and a diluted (1 M) solution to limit strong variations in local pH. The NaOH addition allows an increase of the seawater pH to ∼9.4 or ∼10.3. These pH values were chosen to match the ones reported elsewhere. SEM images indicate that for the same testing duration (72 h), aragonite crystal sizes are larger upon NaOH addition (Figure 9a) than under brucite dissolution (Figure 7b), this latter resulting in more rounded crystals of smaller sizes. Crystals size and shape modifications are consequently the result of Mg²⁺ ions coming from brucite dissolution. Local increases in Mg²⁺ concentration close to CaCO₃ crystallization sites might inhibit aragonite crystal growth.

The NaOH solution addition to the ASW − Mg²⁺ solution allows both calcite and vaterite precipitation. CaCO₃ polymorph selection depends strongly on pH conditions, XRD (Figure 8c,d) and SEM (Figure 9c,d) indicate that calcite (∼80 wt %) is mainly precipitated when pH is controlled at a larger value of ∼10.3. Strongly metastable vaterite is also precipitated (∼20 wt %), while aragonite is only present in very small fraction in the precipitates. Morse et al. found that calcite is formed in Mg-free seawater at ambient temperature. Otherwise, we find that a pH value around 9.4 leads to predominant vaterite precipitation (∼80 wt %). Moreover, only thermodynamically metastable vaterite is precipitated from ASW − Mg²⁺ when a diluted NaOH solution (1 M) is used to slowly increase pH to ∼9.4 (Figure 8b). Vaterite exhibits roughly spherical aggregates (Figure 9b) composed of many nanosized fine particles. These latter agglomerate together to form spheres in order to meet lowest energies but exhibit different internal crystal shapes and sphere mean diameter depending on the NaOH dilution (Figures 9b,c). While the use of diluted NaOH results in 4−6 μm diameter spheres with a compact arrangement (Figure 9b) of parallelipiped-like crystals, more needle-like crystals with various sizes and aspect ratio form in more porous vaterite spheres of larger 8−10 μm diameters under nondiluted NaOH 15 M addition.
These needles, a few hundred nanometers in length, are variably arranged in the various vaterite spheres, for example, tangentially or radially (see the top-left (1) and middle-left (2) spheres of Figure 9b, respectively) and eventually with different orientations in the same sphere. Vaterite formation under similar conditions, that is, pH 9−10 at ambient temperature, in aqueous solutions (but not in Mg-free seawater) has already been reported. While the overall sphere sizes are roughly the same, the internal crystal shapes are subjected to strong variability upon chemical inclusions during elaboration. The vaterite crystal shapes observed in this work are not surprising thanks to this large variability and were already observed by other authors. For instance, Ouhenia et al. observed vaterite spheres with longer radial needle crystals at 25 °C without Mg2+ ions, and some “aberrant columnar” vaterite was observed in biogenic layers of the bivalve shell of Corbicula fluminea, in which the columns are composed of partitioned nanocrystals of vaterite as rough parallelepiped crystals. In our conditions, it is important to remind that brucite dissolution in the seawaters led to an increase of the solution pH up to about 10.3 within the first 6 h, followed by a slow decrease down to ~9.8. Both calcite and aragonite but not vaterite polymorphs were found in the precipitate upon brucite dissolution. These results suggest that pH plays a major role in the vaterite phase selection from Mg-free seawater, pH values not larger than typically 9.4 allowing vaterite precipitation while larger pH values favor predominantly calcite under such conditions. Our results are consistent with those of Sheng Han et al. who found that vaterite was mainly formed at low pH, while both vaterite and some rhombic calcite particles crystalized at larger pH. Hu et al. also found that vaterite was precipitated from CaCl2 and NaHCO3 mixtures at near-freezing temperature and moderate alkaline conditions (pH 9.0). However, another parameter governing the CaCO3 phase selection is the presence of Mg2+ ions. Mg2+ ions in ASW have inhibited vaterite and calcite formation. Thus, results obtained in this section upon NaOH addition are coherent with former results indicating brucite dissolution in the seawaters favored aragonite precipitation by both pH increase and presence of Mg2+ ions. If the effect of Mg2+ ions has already been related as calcite growth inhibitor, the presence of Mg2+ ions provided from brucite dissolution (even keeping a low Mg/Ca ratio) in this study also prompts for the vaterite inhibition potential.

CONCLUSIONS

Brucite (Mg(OH)2) dissolution in seawaters leads to favorable conditions for CaCO3 precipitation. CaCO3 polymorphs and morphologies are controlled by pH and magnesium concentration. On one hand, the predominance of vaterite or calcite precipitated from Mg-free seawaters can be adjusted under pH-controlled conditions by NaOH addition. On the other hand, addition of Mg2+ ions in seawater or working with natural seawater inhibits calcite and vaterite growth and precipitation and favors aragonite occurrence. Consequently, it is demonstrated in this work that brucite dissolution in seawaters provides both the necessary Mg2+ ions and the pH increase necessary to stabilize aragonite precipitation under ambient conditions. WSM addition has no or minor effect on the aragonite cell parameters but
modifies their crystal shapes. Aragonite crystals obtained from ASW + WSM and from NSW have similar morphology.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.cgd.6b01305.

PHREEQC model outcome showing the evolution of pH and SI values of relevant phases as a function of dissolved brucite at 20 °C and pH in saturation indices for aragonite, calcite, dolomite, magnesite, and monohydrocalcite calculated at brucite equilibrium in different solutions at 20 °C (PDF)

AUTHOR INFORMATION

Corresponding Author
*D.N.D. E-mail addresses: dang-dan.nguyen@unicaen.fr, ddan.nguyen@gmail.com.

ORCID
Dan Nguyen Dang: 0000-0003-1334-8914

Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding
Financial support for this research was provided by the French National Research Agency (ANR-13-RMNP-0004) and by the Conseil Régionale de Normandie, France.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to three anonymous referees for their careful reviews and valuable comments that helped us to improve the quality of this manuscript.

ABBREVIATIONS

NSW, natural seawater; ASW, artificial seawater; WSM, water-soluble organic matrix extracted from the nacre of oyster Pinctada margaritifera; ASW + WSM, artificial seawater with WSM added; ASW − Mg2+, artificial seawater without magnesium ions

REFERENCES

