Quantitative Texture Analysis of Spark Plasma Textured n-Bi$_2$Te$_3$

Quentin Lognoné,† Franck Gascoin,‡ Oleg I. Lebedev,‡ Luca Lutterotti,‡ Stéphanie Gascoin,‡ and Daniel Chatagnier‡

†Laboratoire CRISMAT UMR 6508 CNRS ENSICAEN, 6 boulevard du Maréchal Juin, Caen Cedex 04 14050, France
§IUT-Caen, Université de Caen Basse-Normandie, 6 boulevard du Maréchal Juin, Caen 14050, France
¶Department of Industrial Engineering, University of Trento, via Mesiano, 77, Trento 38050, Italy

For the first time, the quantitative texture analysis of edge free sintered Bi$_2$Te$_2.4$Se$_0.6$ samples elaborated by high-energy ball milling and Spark Plasma Texturing is performed. As expected, due to the structural anisotropy, the forging process results in a significant decrease in electrical resistivity perpendicularly to the uniaxial stress field. Surprisingly, this also leads to a large decrease in the lattice thermal conductivity in this direction. Crystallite boundaries amorphization as evidenced by transmission electron microscopy explains this latter decrease due to the friction induced by the applied pressure and grains sliding on each other during reorientation. X-ray diffraction also evidences development of strong crystallite size anisotropy and more isotropic microstrain developments under pressure, simultaneously favoring electronic conduction and phonon scattering, respectively. The thermoelectric performance is thus increased, however, the quantitative texture analysis demonstrates that the enhanced texture is only slightly responsible for the improved performance that rather comes from a peculiarly engineered microstructure.

I. Introduction

Doped bismuth telluride (Bi$_2$Te$_3$) still remains the best thermoelectric materials for near-room-temperature applications, and even if it is already commercially available, efforts are still devoted toward the improvement of its thermoelectric performances. One way to obtain such improvement is via nanostructuring, hence targeting the lowering of the thermal conductivity by an increased phonon scattering generated by the multiplication of the grain boundaries or interfaces throughout the bulk material. An important feature of Bi$_2$Te$_3$, due to its layered structure, is its rather strong anisotropy in transport properties, giving rise to thermoelectric performances of p- and n-type doped Bi$_2$Te$_3$ larger along the ab plane than any other crystal direction. Consequently, in a polycrystalline sample, it is possible to modify the macroscopic transport properties by controlling the degree of crystallographic preferred orientations of the constitutive crystals, and for randomly oriented crystals (random sample), the sample exhibits average transport properties. However, concerning thermoelectric efficiency, an increase in electrical conductivity due to texturing, is expected to be accompanied by a correlative rise of the thermal conductivity due to its electronic contribution, direct consequence of the Wiedemann Franz law.

Uniaxial hot pressing of anisotropically shaped crystals similar to lamellar structures is known to promote the orientation with platelets aligned perpendicularly to the axis of pressure. Furthermore, if during this process the material is allowed to flow freely in the direction perpendicular to the axis of pressure, the hot pressing becomes a hot forging or Spark Plasma Texturing and the alignment of the grains can be optimized.

Combining high-energy ball milling and direct-current-induced uniaxial hot pressing is now recognized as a method to improve the thermoelectric figure of merit of existing thermoelectric materials. This improvement is believed to come from an enhanced texture and from the increased phonon scattering by grain boundaries and structural defects. In this work, we show that the hot-forging process leads to a large increase (about 50%) in the electrical conductivity perpendicularly to the loading axis, whereas neither the Seebeck coefficient nor the thermal conductivity is significantly affected along this direction. This evidently leads to a 50% increase in the thermoelectric figure of merit. More importantly, we demonstrate that the enhanced texture is not responsible for this improvement. Rather, crystallite boundaries’ (CBs) amorphization after the second hot pressing is responsible for this large increase, keeping relatively small thermal conductivities, together with severe crystallite morphology evolution and grain growth that enhance electrical conductivity. This simple elaboration route might potentially offer a way to significantly increase thermoelectric performances of a large variety of materials.

II. Experimental Procedure

Bismuth selenido-telluride samples were elaborated from pure elemental precursors (Alfa Aesar, Schiltigheim, France) of bismuth (needles, 99.99%), tellurium (shots, 99.99%), and selenium (shots, 99.99%). Appropriate stoichiometric mixture of the elements were loaded in a 20 mL tungsten carbide ball mill jar, containing seven tungsten carbide 10-mm-diameter balls. The mixture was then subjected to mechanical alloying for 30 min divided in 15 cycles of 2 min each at 700 rpm in a Fritsch Pulverisette 7 (Fritsch Gmbh, Idar-Oberstein, Germany) premium line device. The obtained powder was compacted a first time using spark plasma sintering (SPS) process in a graphite die of 15 mm diameter at a pressure of 25 MPa during 30 min at a temperature of 723 K. The resulting cylinder (SPS1) showed a density larger than 95% of the theoretical density and a thickness of about 15 mm. A piece was cut from the whole puck for analysis and transport property measurements. The rest of the puck was then re-pressed a second time, using the same pressure-temperature conditions, in a 20-mm-diameter graphite die which allowed a free lateral deformation of the pellet. After this second pressing step, the sample (SPS2) retained a density larger than 95% and a thickness of about 7 mm. Noteworthy, the

X.-D. Zhou—contributing editor

Manuscript No. 34014. Received October 28, 2013; approved March 24, 2014.

Author to whom correspondence should be addressed. e-mail: franck.gascoin@ensicaen.fr
density above 95% of both SPS1 and SPS2 is indeed a prerequisite condition that allows the direct comparison of the thermal and electrical transport properties of the material after the first and the second densification cycle.

Texture, coherent domain sizes and shapes, microstrains, and structural variations were investigated using X-ray diffraction. We used a four-circle diffractometer setup equipped with a Curved Position Sensitive detector (CPS12 from INEL SA, Artenay, France), using the monochromatized CuKα average radiation. Data were analyzed within the combined analysis formalism\(^1\) implemented in the MAUD software.\(^2\) Briefly, this methodology allows the quantitative texture determination of the samples, using a cyclic Rietveld refinement of a series of X-rays diagrams measured at different sample orientations. It is then possible to incorporate the determination of other sample features like structure, residual stresses, crystallite size and microdistributions, phase analyses, etc. Due to the relatively low expected texture strength in such samples, we measured 2θ diagrams using a regular 5° x 5° grid in tilt and azimuth angles (ϕ and Θ, respectively) with 0° ≤ ϕ ≤ 55° and 0° ≤ Θ ≤ 355°. It resulted in 864 diagrams, each one exhibiting nearly 4000 measured points. We used an incident angle of the X-ray beam on the sample plane of α = 20°, approximately centered on the main Bragg peaks for the phases of concern. The broadening of data was used to adjust the average areas of these peaks.\(^3\) The obtained pole figures are normalized into multiples of a random distribution (m.r.d.), a unit that does not depend on other factors than orientation. In such units, a sample without preferred orientations exhibits uniform pole figures with 1 m.r.d. levels, whereas a textured sample shows pole figures with maxima and minima of orientation densities ranging from 0 m.r.d. (absence of crystals oriented in this direction) to infinity (for a single crystal on few degrees). The overall texture strength is evaluated through the texture index,\(^4\) which is expressed in m.r.d.\(^5\) and varies from one (random powder) to infinity (perfect texture or single crystal) and used to compare the texture strength of different samples exhibiting similar Orientation Distributions (OD). Such normalized pole figures are calculated from the OD of crystallites, refined using the E-WIMV algorithm,\(^6\) after extraction of the peak intensities during the Rietveld cycles. The OD and profile refinement reliability factors are estimated using conventional reliability factors.\(^7\) During these refinements, the unit-cell definition of bismuth telluride used is the R-3 m:H space group, Crystallography Open Database n° 1.511.976.\(^8\) The sample reference frame is given by the SPS direction of pressure, \(P_{SPS}\), which corresponds to the centers of the pole figures (Z). We could not detect any residual strains within our experimental resolution, that is, the residual stresses, if existing, are estimated lower than 10 MPa. Crystallite sizes, shapes, and microstrains were refined within the Rietveld cycles using the Popa description.\(^9\) We estimate that our X-ray Combined Analysis setup probed several millions of crystallites. The instrumental contributions (ϕ and Θ broadenings, peak shapes, zero-shifts, line shapes, etc) were calibrated using the 660b LaB\(_6\) powder standard from National Institute of Standards and Technology. A counting time of 2 min for each sample orientation was used, and our optical setup provides a 0.1° peak widths in 20 around 20 = 40°.

The OD and 2nd rank single crystal property tensors were then used to calculate the macroscopic tensor properties, electrical resistivity, thermal conductivity, and Seebeck coefficient \(\psi_{ij}^{M}\) (\(K_{ij}\) and \(\sigma_{ij}^{M}\), respectively), using the geometric mean approach.\(^10\) This allows us to estimate the orientation effect on the anisotropic properties of the SPS1 and SPS2 samples from intrinsic values. For our space group, and for our compositions that do not show magnetic ordering, all the anisotropic tensor properties of concern here can be represented by two independent components:

\[
\begin{array}{cccc}
\rho_{ij} = & \rho_{11} & \rho_{12} & \rho_{13} \\
\rho_{12} & \rho_{11} & \rho_{13} & \rho_{13} \\
\rho_{22} & \rho_{12} & \rho_{11} & \rho_{13} \\
\rho_{23} & \rho_{33} & \rho_{33} & \rho_{33} \\
k_{ij} = & k_{11} & k_{12} & k_{13} \\
k_{12} & k_{11} & k_{13} & k_{13} \\
k_{22} & k_{12} & k_{11} & k_{13} \\
k_{33} & k_{33} & k_{33} & k_{33}
\end{array}
\]

the axis 3 being parallel to the c axis of the structure and 1 perpendicular to it. Considering the measured carrier concentration of our samples, we used the single crystal tensors determined by Scherrer et al.\(^11\) [tables 10 and 12, \(n = 5.7 \times 10^{19} \text{cm}^{-3}\)], that is, \(\rho_{11} = 9.8 \mu \Omega \cdot \text{m}, \rho_{13} = 54 \mu \Omega \cdot \text{m}, k_{11} = 1.70 \text{W} \cdot \text{(m K)}^{-1}, k_{33} = 0.75 \text{W} \cdot \text{(m K)}^{-1}, \sigma_{11} = 207 \mu \text{V} \cdot \text{K}^{-1}, \) and \(\sigma_{33} = 195 \mu \text{V} \cdot \text{K}^{-1}\).

The macroscopic resistivity and Seebeck coefficients \(\psi_{ij}^{M} \) and \(\sigma_{ij}^{M}\) resp.) were measured in a direction perpendicular to \(P_{SPS}\) with a ULVAC ZEM-3 apparatus using the four-point probe method and differential (ULVAC, Tokyo, Japan) method, respectively. Measurements were made on 2 mm x 2 mm section and 10-mm-length bars between 300 and 473 K under a partial pressure of 0.1 atm of helium. The \(\psi_{ij}^{M}\) thermal diffusivity (also measured perpendicularly to \(P_{SPS}\)) was determined by flash laser method using a LFA457 device (Netzsch, Selb, Germany), under 20 mL per min nitrogen flow. Samples were 6 mm x 6 mm squares with a thickness of 1 mm. Samples’ heat capacity was calculated within the Du long–Petit approximation and used for the determination of the macroscopic thermal conductivity \(k^{M}_{ij}\). The bulk density was measured by Archimedes method using ethanol as the displaced fluid. Microstructures were examined on fractured samples by using a Carl Zeiss scanning electron microscope (SEM).

Transmission electron microscopy (TEM), electron diffraction (ED), and high resolution TEM (HRTEM) studies were carried out using a FEI Tecnai G2 30 UT microscope (Tecnai, Eindhoven, the Netherlands) operated at 300 kV and having 0.17 nm point resolution. The chemical composition of the material was verified by EDX analysis using an energy-dispersive X-ray analysis attached system. Two types of cross-sectional specimens were prepared for TEM experiments using conventional specimen preparation technique. To have 3D information on crystallites and CB’s structure, the cross-sectional samples were cut parallel and perpendicular to \(P_{SPS}\), mechanically polished to the thickness of about 50 μm and finally Ar\(^+\) ion-beam milled under grazing incidence with respect to the surface by using a JEOL Ion Slicer machine (JEOL, Tokyo, Japan). It is important to notice that ion-milling was carried out with the same conditions for both SPS samples (SPS1 and SPS2). This allows for proper TEM comparative analysis of the structure of the two samples.

III. Results and Discussion

Figure 1 shows the SEM images of fractured pieces of SPS1 and SPS2 in a plane parallel (left images) and perpendicular (right images) to \(P_{SPS}\). Two features appear on this figure, that is, (1) grain growth promotion by the 450°C temperature (comparing Figs. 1(a) and (c), or 2(b) and (d)) needed to insure densification in a platelet-like shape; and (2) enhanced platelets alignment with short dimension of the platelets tending to align with \(P_{SPS}\). Noteworthy, the SEM grain size is roughly ten times larger in SPS2 than in SPS1, being extended typically from some micrometers in the latter to some 10 μm in the former. Such an increase in texture and grain sizes is expected to have a significant effect on the transport properties. In this contribution, because the elaboration process results in thin samples, all the transport measurements correspond to fluxes along the transverse direction, perpendicular to \(P_{SPS}\), that is, the 1 or 2 macroscopic directions. From the Curie principle, it is not expected
any deviation from axial symmetry around P_{SPS}, and 1 and 2 directions should be equivalent.

Variations in diffracted intensities are observed with the (χ, ϕ) orientation of the SPS samples (Fig. 2, bottom diagrams), more pronounced on SPS2 as a sign of its stronger crystallographic texture. Combined analysis refinement (Fig. 2, top diagrams) correctly reproduces the experimental diagrams, with reliability factors $R_w = 33.2\%$, $R_{exp} = 26.3\%$ and $R_w = 31.6\%$, $R_{exp} = 26.4\%$ for SPS1 and SPS2, respectively. Such factors could appear large, however, one has to remember that reliability factors depend on the number of experimental points, which in our case is very large (around 2 million per sample) and should be compared to the complexity of the model. Considering these two factors one can evaluate a χ^2 value of 1.26 and 1.19, respectively, corresponding to good refinement values. The pole figures for the main crystallographic directions of Bi$_2$Te$_2$Se$_{0.6}$ (Fig. 3) are showing the preferred orientation stabilized in the two samples. Both samples exhibit fiber texture with fiber axis corresponding to the mean c axis of the structure. However, the fiber axis of SPS1 is inclined by about 40° from P_{SPS}, whereas in SPS2 this fiber axis has been reoriented to align with P_{SPS}. The maxima of the OD are of 4.3 and 45.1 m.r.d., respectively, the maxima in the $\{003\}$ pole figures (1.7 and 4.5 m.r.d.), and the overall texture strength index F^2 of 1.01 and 3.9 m.r.d.2, all pointing toward a relatively low texture strength, however, much more pronounced in SPS2. The ODs have been refined with the satisfactory reliability factors $R_w = 14.8\%$ and 14.4%, respectively, and show minima levels of 0 m.r.d. indicating that the orientation components are the only ones developed in our samples. The refinement converges to unit-cell parameters of $a = 4.32\ 715(2)\ \AA$, $c = 30.1514(2)\ \AA$ for SPS1 and $a = 4.32\ 452(3)\ \AA$, $c = 30.1458(2)\ \AA$ for SPS2, values that are coherent with the bulk ones for this phase as evidenced by the evolution of the cell parameters within the solid solution Bi$_2$Te$_{1-x}$Se$_x$ that clearly follows Vegard's law (Fig. 4).

We refined the z atomic positions (Table I) for Bi and Te(2) atoms and occupation factors of Te(1), constraining Se(1) to complement this latter site. These results do not show significant variations in the atomic positions between SPS1 and

Fig. 1. Scanning electron microscopy images of fractured pieces of SPS1 and SPS2 in a plane parallel [(a) and (c) images] and perpendicular [(b) and (d) images] to P_{SPS} (scale bar = 10 μm).

Fig. 2. X-ray diffraction diagrams measured for all the (χ, ϕ) orientations of the samples (bottom diagrams), and refined diagrams after Combined Analysis (bottom), showing the reproducibility of the methodology for both SPS1 (a) and SPS2 (b) samples.
SPS2, and the refined Se(1) occupations, though tending to poke for a small Se lost in SPS2, remain in agreement with the nominal composition of our samples. For all properties of concerns here, we are not expecting large influences from these latter differences in our case.

Astonishingly, the refined anisotropic mean crystallite sizes (Fig. 3), starting from 370 Å along the c axis and 470 Å along the a axis in SPS1, elongate by 2.5 times along c (1085 Å) but shrink by around 45% (250 Å) along a in SPS2. Comparing the SEM images of Fig. 1(c) with these latter sizes, and taking account of Fig. 3, the Bi$_2$Te$_{2.4}$Se$_{0.6}$ platelets which developed under the SPS2 conditions are made up with approximately two crystallites along their small dimension, whereas 400 coherent domains are present along the platelets’ long dimension, that is, as an average perpendicularly to P$_{SPS}$. We would then expect a quite different behavior along P$_{SPS}$ and transversally. We could not evidence significant differences between the two samples mean microstrain levels, of about 7.10$^{-4}$ rms.

Taking account of the single-crystal constants of Bi$_2$Te$_{2.4}$Se$_{0.6}$ and the refined OD of the two samples, we obtained the following macroscopic tensors:

\begin{align*}
\rho^M_{ij} &= 17.31 & 17.31 & 17.31 \\
\kappa^M_{ij} &= 1.32 & 1.32 & 203.2 \\
\alpha^M_{ij} &= 203 \quad 203.2 \quad 203.2 \\
\end{align*}

for SPS1 and,

\begin{align*}
\rho^M_{ij} &= 16.79 & 16.79 & 16.79 \\
\kappa^M_{ij} &= 1.32 & 1.32 & 203.2 \\
\alpha^M_{ij} &= 203.2 \quad 203.2 \quad 203.2 \\
\end{align*}

for SPS2,

from which we can calculate the anisotropy factors between the 3 and 1 directions of the samples (Table II).
As expected from the relatively low texture strengths, the anisotropies in main macroscopic properties due to orientation effects (the sole ones evaluated quantitatively at this stage) are not pronounced, or even absent for the macroscopic Seebeck coefficient. This is also due to the fiber character of the texture which tends to homogenize physical properties. Sample SPS1 appears to behave as perfectly isotropic in all properties of concern. However, the anisotropy in both thermal conductivity and electrical resistivity are somewhat larger in SPS2 (by 5% and 10%, respectively), and other parameters extrinsic to the crystallites might induce other anisotropic effects, such as grain-boundary densities linked to the anisotropic crystallite sizes.

Table II. Anisotropy Factors Between the 3 and 1 Directions of our Samples, as Calculated from the Refined Macroscopic Tensors

<table>
<thead>
<tr>
<th></th>
<th>(\rho_{33}^{M}/\rho_{11}^{M})</th>
<th>(\kappa_{33}^{M}/\kappa_{11}^{M})</th>
<th>(\sigma_{33}^{M}/\sigma_{11}^{M})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single crystal</td>
<td>5.51</td>
<td>0.44</td>
<td>0.94</td>
</tr>
<tr>
<td>SPS1</td>
<td>1.00</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>SPS2</td>
<td>1.10</td>
<td>0.95</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The electrical resistivity decrease from SPS1 to SPS2 has a direct impact on the thermal conductivity as its electronic contribution (\(\kappa_{11}^{el}\)) will increase in the same proportion which is in accordance with the Weidemann–Franz law.\(^7\) Moreover, as the second cycle of hot pressing causes a clear grain growth, the lattice contribution to the thermal conductivity (\(\kappa_{11}^{lat}\)) should increase due to a decreased number of grain boundaries resulting in lower phonons scattering. The total thermal conductivity of SPS1 and SPS2 (Fig. 5), however, remains almost identical on the whole probed temperature range. Even more surprisingly, as the electronic contribution of the thermal conductivity increases correlatively to the electrical resistivity decrease, it is thus the lattice contribution to the thermal conductivity that has decreased in SPS2, in direct opposition to the fact that the grains are bigger in this latter than in SPS1. This behavior is often justified by the presence of nanometer-size defects or nanodomains\(^7,30,31\) whose formation is promoted by the ball-milling technique used to prepare the alloys. However, even if this nanostructuring effect had an impact, it should be more pronounced for SPS1 than for SPS2 as the latter has undergone a second heat treatment. As this is not the case, it is very debatable to suggest that such a nanostructuring can be accounted for the difference in thermal transport properties observed between our samples.

This striking behavior leads to a thermoelectric figure of merit \(zT\) (Fig. 6) that increases by as much as 50% from SPS1 to SPS2, almost reaching 1 at 425 K. But, more than the absolute value of the \(zT\), the way it has been increased must be stressed out and discussed. Indeed, it is in direct contradiction with the general idea of nanostructuration.\(^7\)
commonly used as a mean to increase the number of grain boundaries and interfaces to scatter more efficiently the phonons.1–3 Here, the visible increase in grain size from SPS1 to SPS2 does not lead to an increasing $\kappa^{\text{eff}}_{\text{lat}}$. On the contrary, this latter decreases by a factor of 2–2.5 from SPS1 to SPS2

Fig. 6. Evolution of the thermoelectric figure of merit $\zeta T M_{11}$ of SPS1 (blue) and SPS2 (red) as a function of temperature demonstrating the 50% increased solely due to the second sintering cycle.

Fig. 7. TEM observation of the crystallite boundaries structure. TEM images of the crystallite boundaries (CB) in $\text{Bi}_{2}\text{Te}_{3-x}\text{Se}_x$ SPS1 (a, b) and SPS2 (c, d) samples. (a) Low-magnification bright-field TEM image of 90 degree rotated CB in SPS1 sample. The boundary is indicated by white arrowheads. Scale bar = 5 nm. (b) HRTEM image of CB between two differently oriented grains in SPS1 sample. Selected-area electron diffraction pattern is given as an insert and corresponds to [100] zone axis of $\text{Bi}_{2}\text{Te}_{3-x}\text{Se}_x$. (c) HRTEM image of typical CB found in SPS2. A layer of bright contrast along CB is indicated by pairs of white arrowheads. (d) Enlargement HRTEM image of selected by white rectangle in figure (c) area. Two pairs of white arrowheads indicated region of bright contrast layer in CB where no crystallite overlapping occurs.
images of the boundary and layer structure difficult. Nevertheless, depletion of the contrast at the interface is evident. Certainly, TEM image contrast can be produced by several different mechanisms and depends on image and specimens conditions, such as orientation, thickness, and defocus. However, within a single HRTEM measurement on a single crystal all these parameters can be considered equivalent and image contrast simply can be interpreted in terms of absorption and diffraction contrasts. The absorption contrast depends on the fact that the elastic and inelastic scatterings of electrons increase with the atomic number. In this case the thicker area may consist of heavy atoms that will deplete the transmission beam more than lighter atoms, and appears darker in contrast. The diffraction contrast is produced by transmitted and diffracted electrons. In this case, if there are regions of the crystal where lattice planes are bent or where the structure is disordered, the diffracted intensity can be locally increased resulting, in appearance, in a brighter contrast compared with the surrounding areas. In this respect, taking into account the unlikely nonuniform thicknesses and chemical composition in the 2 nm interface layer we assume that observed bright contrast layers at the boundary are due to the presence of a disordered structure. This is also confirmed by an EDX mapping (performed under TEM) that shows the overall homogeneity of the samples without any compositional discrepancy at the CBs. In fact no stoichiometry could be found between SPS1 and SPS2, in good agreement with the refined lattice parameters (Fig. 4). Moreover, the mapping of SPS2 samples, performed over a surface that encompasses several crystallites boundaries, did not show any stoichiometry changes when passing through grains boundaries, comforting the idea of the formation of amorphous crystallites boundaries. Figure 7(d) shows an enlarged area of the CB selected by the white rectangle in Fig. 7(c). This part of the CB is clearly free of overlapping crystallites and this area provides a strong evidence of the presence of highly disordered (most probably amorphous) layer at the CBs and strongly supports our assumption. Interestingly, the typical distance between these disordered CB is in the range of the coherent size domains (crystallite sizes) determined by X-ray diffraction on SPS2 perpendicularly to PSPS, that is, 25 nm.

The CB differences observed between SPS1 and SPS2, together with the fact that disordered CBs will contribute to an enlarged phonon scattering, explain the lowering of the lattice thermal conductivity \(k_{11at}^{\text{lat}}\) from SPS1 to SPS2. The origin of the degradation of these grain boundaries evidently comes from the second cycle of sintering. As the bismuth seleno-telluride grains are plate-like shaped, they have the tendency to be oriented perpendicular to the pressing direction. During the second sintering cycle, their reorientation is partly made possible because the used pressure forces the grains to slide on each others. This reorientation is, however, limited at solid state, and provokes intense frictions at the interfaces between grains, even reinforced by grain growth. This creates internal defects in the grains, visible as disordered/amorphous CBs. It may be proposed that the disordered CBs should also result in an increased electrical resistivity. However, the characteristic mean free path for phonons \(\phi_{\text{ph}}\) in related materials has been evaluated to only some nm, that is, typically the size of the crystallite grain boundaries observed in SPS2, whereas the electron mean free path \(\phi_{e}\) in the parent phase Bi$_2$Te$_3$ is at least of 550 nm at 300 K, that is, about half the grain size along the (a, b) planes.\(^{32,33}\) In the parent phase \(\phi_{e}\) decreases for larger temperatures,\(^{33}\) giving rise to an increased electrical resistivity, which we also observe in our samples. The achievement of nanometer size CBs within several micrometers of grains allows then pronounced crystallite boundary and interface phonon scattering at the disordered interfaces created by the second sintering step, hereby decreasing thermal conductivity, whereas electrical resistivity remains small thanks to the conjugated effects of crystal growth and orientation.

IV. Conclusions

A quantitative texture analysis is performed for the first time on a hot-forged bismuth telluride alloys.

We have shown that by a careful control of sintering under SPS conditions the creation of both amorphous CBs, as seen locally using HRTEM or macroscopically using X-ray diffraction profile analysis, and significant grain growth and partial orientation, can be operated. This grain and CBs engineering allows an efficient way of reducing simultaneously the electrical resistivity—because of the presence of less grain boundaries perpendicularly to PPS—and the thermal conductivity—because more CBs are created perpendicularly to PPS—giving rise to a large improvement in \(z_T\). The texture analysis also reveals that the second sintering step does increase the degree of texture, however, this increase has a very limited effect (5% to 10%) on the macroscopic transport properties, indication that the thermoelectric performance improvement is rather mainly due to the above-mentioned micro and nanostructure modifications.

These results have been reproduced several times and according to our results, further improvements are likely as the parameters of the sintering cycles (time and temperature) have an impact on grain size and degree of texture. Moreover, the same technique might be useful to improve the thermoelectric properties of various materials, the first targets might evidently be anisotropic materials but eventually even isotropic materials should be tested as the process is “simple” mechanical and results from the combined grain growth and amorphization of the crystallite boundary by friction, leading to a decreased lattice thermal conductivity.

Acknowledgments

The authors are indebted to L. Gouleuf for the TEM sample preparation. LL and DC would like to thank the Conseil Régional de Basse-Normandie and the Fond Européen de Développement Régional for co-financing LL’s Chair of Excellence at CRISMAT-ENSICAEN, and partly financing the X-rays instruments.

References

