Effect of Oxygen Doping and Cation Composition on Critical Current Densities in Polycrystalline Bi-2212 Conductors with Various Textures

Acknowledgments

- J-F Fagnard and P Vanderbemden (University of Liége) for fruitful discussions
- A Portrait (ENSI Caen) and Y Oz (NHMFL) for the help in experiments
- Z Abdoulaeva, S Krämer, R Deul, W Horst (Nexans); A Gignard, M Matras, V Moreau, A Camus, C Sillanfest (ENSCI, Limoges); E Lugand (EPF, Paris) for assistance in experiments
- EUCARD2 and IDS-FUNMAT Projects for financial support

EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453
The origin of Strong **Compositional Effects on** \(J_c \) (4.2 K, sf) in Bi-2212 Wires and Dip-Coated Tapes is not clear.

It is known that significant **Overdoping** is necessary for optimizing \(I_c \) in Bulk and Round Wire conductors.

Literature data suggest that **optimum doping** (highest \(T_c \)) depends on **cation composition** of Bi-2212.

Can the difference in the doping state explain the compositional effects on \(I_c \) in Bi-2212 tapes and wires?
STRONG Effect of Cation Composition on Wire and Tape Performance

W521-524: Bi$_{2.14}$: Sr$_{(2.86-x)}$: Ca$_x$:Cu$_{2.00}$
Sr/Ca = 2.25, 2.18, 1.75, 1.34

- Microstructural studies of tapes and wires did not explain a factor of four or more difference in J_c of best (Sr-rich, 521) and worst (Ca-rich; 524) compositions
Overdoping $\Delta \delta_0$ is necessary for optimizing I_c, T_c & I_c vs. δ in OST 521-like RW

$\Delta \delta_0 = 0.017(6)$

$\delta_{opt} = 0.196(4)$

$\delta_0 = 0.213(4)$

Rikel et al ASC2012
OPTIMUM Doping Depends on Cation Composition

- Single Crystals grown from $\text{Bi}_{2+x}\text{Sr}_{2-x}\text{Ca}_1\text{Cu}_2\text{O}_{8+\delta}$ powders
- Annealed to vary O index
- Smaller Sr/Ca requires more overdoping

Hypothesis to Check

Can the difference in the doping state explain compositional effects on J_c in Bi-2212 tapes and wires?

Program of Studies:
- Use $\text{Bi}_{2.00+z}\text{Sr}_{3.00-z-x}\text{Ca}_x\text{Cu}_{2.00}\text{O}_{8+\delta}$ based conductors (bulk, round wires, tapes)
- Vary O contents δ
- Justify $T_c(\delta)$ for various z & x
- Study effect of δ on $J_c(B)$ at various temperatures.

Proof-of-Principle Results
- T_c vs. δ and J_c vs. δ for bulk samples of Sr- and Ca-rich compositions

First Results for W521 wires
- T_c vs. δ and J_c vs. δ at 77, 66 and 4.2 K
Melt Cast Processed (MCP) Bi-2212 Bulk

- Easy to change cation composition in comparison with fabrication of wire and tape conductors

- 400 A class elements for FCL systems

- \(J_c(77 \text{ K}, 0 \text{ T}) \sim 5 \text{ kA/cm}^2 \)

- \(J_c(66 \text{ K} = 0.7 T_c) \sim 15 \text{ kA/cm}^2 \sim 20\% \) of best \(J_c(77 \text{ K} = 0.7 T_c) \) in Ag/Bi2223
Compositions of 5 and 8 mm Ø MCP rods

\[
\text{Bi}_{2.00+z}\text{Sr}_{3.00-z-x}\text{Ca}_x\text{Cu}_{2.00}\text{O}_{8+\delta}
\]

<table>
<thead>
<tr>
<th>Lot</th>
<th>Bi</th>
<th>Sr</th>
<th>Ca</th>
<th>Cu</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>2.15</td>
<td>2.03</td>
<td>0.82</td>
<td>2.00</td>
<td>Sr/Ca similar to NSC bulk, but no SrSO4</td>
</tr>
<tr>
<td>82</td>
<td>2.15</td>
<td>1.95</td>
<td>0.90</td>
<td>2.00</td>
<td>~ 521</td>
</tr>
<tr>
<td>84</td>
<td>2.15</td>
<td>1.82</td>
<td>1.03</td>
<td>2.00</td>
<td>~ 522</td>
</tr>
<tr>
<td>524</td>
<td>2.15</td>
<td>1.63</td>
<td>1.22</td>
<td>2.00</td>
<td>Vintage powder 2004</td>
</tr>
<tr>
<td>85</td>
<td>2.08</td>
<td>2.07</td>
<td>0.85</td>
<td>2.00</td>
<td>Sr/Ca as in 83</td>
</tr>
<tr>
<td>86</td>
<td>2.08</td>
<td>1.68</td>
<td>1.24</td>
<td>2.00</td>
<td>Sr/Ca as in 524</td>
</tr>
<tr>
<td>148</td>
<td>2.00</td>
<td>2.11</td>
<td>0.89</td>
<td>2.00</td>
<td>Sr/Ca as in 83</td>
</tr>
<tr>
<td>149</td>
<td>2.00</td>
<td>1.70</td>
<td>1.30</td>
<td>2.00</td>
<td>Sr/Ca as in 524</td>
</tr>
<tr>
<td>147</td>
<td>1.95</td>
<td>2.01</td>
<td>0.92</td>
<td>2.02</td>
<td>NSC bulk (+ 0.1 BaO + 0.45 SrSO4)</td>
</tr>
</tbody>
</table>

- 4 similar to 521 to 524 studied in 2004-2006
 + 147 (empirically optimized at Nexans since 1990’s)
- 4 more with smaller Bi contents to double check correlations

April 08, 2015
The composition of Bi-2212 phase differs from the overall one and was determined from EDX with correction for presence of Bi-2201 intergrowth defects, whose density was assessed from XRD.
Adjusting O Contents

The δ-pO_2-T diagram of Schweizer et al (1993)

- Anneal at high T for fast equilibration;
- Quench or cool down along the pO_2-T cooling trajectory to suppress O exchange
- For $\delta > 0.230$, just annealing in air or O_2 at $350 \leq T \leq 550°C$

What is varied is the *nominal* O contents
Real δ are likely dependent on the cation composition (TBD).

April 08, 2015
Reversible (=> no changes in microstructure) changes in RT resistivity from ~5 to ~2 mΩ·cm suggest almost linear changes in carrier (hole) density p.
Proof-of-Principle Results

- Optimum O doping δ_{opt} [maximum T_c]
 for Sr-rich and Ca-rich Compositions
 (the doping state that optimizes T_c)
T_c decreases and δ_{opt} increases when decreasing Sr/Ca

- Optimum δ and maximum attainable T_c depend on cation composition
The effect of cation composition on Optimum Doping

\[\delta_{\text{opt}} = 0.282 \pm 0.033 \]

\[\partial \delta_{\text{opt}} / \partial (\text{Sr/Ca}) = -0.10(4) \]

- The strong effect confirmed, but the precision is bad
- The predicted (average) optimum for real 524 composition requires annealing at 300°C and ~200 bar \(O_2 \) (log \(pO_2[\text{bar}] = 2.3\pm1.7 \))

April 08, 2015
Proof-of-Principle Results

- Optimum O overdoping [maximum self-field $J_c(77 \text{ K})$] as function of cation composition (the doping state that optimizes J_c)
T_c and transport $J_c(77 \, \text{K})$

Composition #147; Sr/Ca = 2.43(14)

\[
\Delta \delta_{\text{ovd}} = 0.024(4)
\]

\[
\delta_{\text{opt}}(J_c) = 0.201(2)
\]

\[
\delta_{\text{opt}} = 0.177(3)
\]

\[
\text{Bi}_{1.95}\text{Sr}_{2.01}\text{Ca}_{0.92}\text{Cu}_{2.02}\text{O}_{8+\delta} + 0.1\text{BaO} + 0.4\text{SrSO}_4
\]

April 08, 2015
Overdoping $\Delta \delta_{ovd}(77 \text{ K})$ versus $T_{c, \text{ max}}$

$\Delta \delta_{ovd}(77 \text{ K}) = \delta_0 \{ J_c(77 \text{ K}) \} - \delta_{\text{opt}}$

- Overdoping $\Delta \delta_{ovd}$ at 77 K is a function of $T_{c, \text{ max}}$, tending to zero when $T_{c, \text{ max}}$ tends to 77K
Optimum Overdoping $\delta_o(J_c)$ and Cation Composition

- Optimum overdoping for $J_c(77 \text{ K, sf})$ depends on cation composition, particularly on the Sr/Ca ratio.
- Large errors in $\delta_o(J_c)$ for some compositions indicate sample-to-sample irreproducibility, likely, related to different sensitivity to solidification paths, which may lead to the scatter of the Sr/Ca ratio in the Bi-2212 phase.
Correlation between maximum J_c (77 K) in 8 mm \varnothing MCP rods and optimum overdoping $\delta_o(J_c)$

- The sample-to-sample scatter is almost unseen
$J_{c,\text{max}}(77\text{ K, sf})$ vs $\delta_0(J_c)$ & $T_{c,\text{max}}$ vs δ_{opt}

Intentional or unintentional variations in cation composition strongly affect $J_c(77\text{K})$ vs. δ most likely because of variation in T_c vs. δ
Proof-of-Principle Results

- Optimum O overdoping [maximum $J_c(T, H)$]
 for Sr-rich and Ca-rich Compositions
Nexans Bulk Standard #147
Magnetization Data at 4.2 to 77 K

\[\Delta M(77K, 0.05 \, T), \text{emu/g} \]

\[\Delta \delta(77K) = 0.024(5) \]

\[\Delta M(H, T) \] data for \(\varnothing5 \, \text{mm} \) rods:
- \(\delta_o(J_c) \) is strongly \(T \) dependent
- \(\Delta \delta \) increases with decreasing \(T \)

\[\Delta \delta(40 \, K) = 0.048(7) \]

\[\Delta \delta(4.2 \, K) = 0.061(5) \]
Bulk samples #83 [Sr/Ca = 2.37(16)] and #524 [Sr/Ca = 2.03(8)]

- No optimum is reached at 4.2 K: \(\delta_o \geq 0.252 \)
Temperature dependence of overdoping is somewhat similar to the temperature dependence of the energy gap $\Delta(T,\delta)$.

Overdoping $[T-\Delta\delta_o]$ Map.
\(I_c(4.2 \text{ K})\) in OST wire with 521 composition.
\(\text{Sr/Ca(EDX)} = 2.20(5)\)

- Composition of Bi-2212 phase in MCP #83 with \(\text{Sr/Ca} = 2.37(16)\) & #524 with \(\text{Sr/Ca} = 2.03(8)\) bracket the composition of Bi-2212 phase in W521 wires with \(\text{Sr/Ca} = 2.20(5)\)
- If \(\delta_o(J_c) = 0.234(4)\) confirmed, then not only the composition, but other factors play a role in wire samples.
Why optimizing J_c requires overdoping?

- Changes with δ of the condensation energy density $U_0 = B_c^2/2\mu$
 U_0 depends on the carrier density p and energy gap ($\sim T_c$) and peaks at $p > p_{opt}$.
 $\Rightarrow J_c \approx U_0 \xi \quad (\xi = \text{coherence length weakly dependent on } p)$
 peaks at $\delta_o(J_c) > \delta_{opt}$

- Effect of the doping state on the transparency of GBs to supercurrent
 The doping states of GBs in general differ from that of the bulk
 O overdoping may affect the transparency of GBs to supercurrent
 Texture (dominant type of GBs) may affect $\delta_o(J_c)$

- Further studies of Bi2212 conductors with various compositions and texture should clarify what are the relative contributions of these mechanisms
Consequences for Processing Round Wires

Can the difference in the doping state explain compositional effects on J_c in Bi-2212 tapes and wires?

- No answer, but
- Bi-2212 conductors need optimization of their O doping state, which opens an opportunity to independently optimize the microstructure and basic parameters dependent on the O doping:
 - The empirically optimized composition 521 (Bi$_{2.17}$Sr$_{1.94}$Ca$_{0.89}$Cu$_{2.00}$O$_{8+\delta}$) is the best for partial melt processing (PMP) round wires in 100% O$_2$.
 - Sr richer compositions may need post-annealing to have smaller δ
 - Ca richer compositions may need post-annealing to have larger δ
- The cation composition of Bi-2212 phase in PMP conductors is in general different from the overall precursor composition
 - The O doping state should be a processing parameter in any optimization program
Conclusion and Outlook

- It is confirmed that cation composition affects optimum O contents that maximizes T_c, and the effect seems **to be very strong**
 - Further work [T_c vs. δ] is necessary to better quantify the dependence

- I_c optimization needs **significant overdoping**, which is temperature dependent.
 - Further work [M(H, T) vs. δ] is necessary to quantify the temperature dependence and relate it to the basic properties of Bi-2212

- Oxygen contents δ_{ovd} optimizing J_c in MCP bulk seem to differ from that for PMP wires (**to be double checked**) suggesting that not only composition, but **other factors** (e.g., texture) may affect $\delta_o(Jc)$

- **O doping state and cation composition should be considered as important parameters for optimizing performance of Bi-2212 conductors**
Thank you for your attention
Relative changes in δ are largely consistent with the phase diagram used. The slope corresponds well to presence of \sim10% second phases in the samples.
Why optimizing J_c requires Overdoping?

- Condensation energy density $U_0 = \frac{B_c^2}{2\mu}$ peaks at $\delta > \delta_{\text{opt}}$
 Pinning force $F_p \sim \frac{B_c^2}{2\mu}$
 $U_0 \sim N(\delta, T) \times \Delta(\delta, T)$
 the density of states $N(\delta, T) \sim a\delta + b$
 the energy gap $\Delta(\delta, T) \sim T_c \sim [1-(\delta - \delta_{\text{opt}})^2]$ at least for $\delta > \delta_{\text{opt}}$
 As $a > 0$, optimum of $(a\delta + b) [1-(\delta - \delta_{\text{opt}})^2]$ is at
 $\delta_o (J_c) > \delta_{\text{opt}}$

- Transparency of GBs may depend on the doping state
 The doping state of a GB in general differs from that of the bulk
 Overdoping may affect the transparency of GBs to supercurrent
 Texture (dominant type of GBs) may affect $\delta_o (J_c)$

T Shen et al (2009) *APL* 95, 152516