FROM WET SPONGES TO OPTOCERAMICS

Pille, A., Kanaev, A., Chateigner, D., El Mendili, Y., Feldbach, E., Billeton, T., Schoenstein, F.

Laboratoire de Sciences des Procédés et des Materiaux, Université Paris 13, Sorbonne Paris Cité, Villetaneuse, France, e-mail: annika.pille@lspm.cnrs.fr

T02: High Temperature Processes and Advanced Sintering

ECerS 2017 Budapest
Topics of discussion

- Context and objective
- Growing and modifying the “sponges”
- Consolidation – spark plasma sintering
 - Characterization of ceramics
 - Conclusions and perspectives
Motivation

To control the grain size of ceramics on our way to self-healing nano-grained transparent ceramics

Applications as optical windows in nuclear (fusion) power plants, transparent armors, nose cones for heat seeking missiles (YAG), space engineering, medicine ...
Growing alumina monoliths*

99% porosity of the monolith makes it easy to dope by gas or liquid

1 cm/h = 0.5 g (43 m% water)

80% humidity, 25°C, cooling plate 23°C

Al plate + Ag-Hg amalgam -> Al(OH)₃ monolith

Spark plasma sintering

- Vacuum or argon
- Conductive or not
- 3.5 – 50 kN
- 20 – 2000°C
- Sample displacement

- Joule effect
 => fast process, grain size control
- High temp + pressure
 => dense materials

![Graph showing displacement and pressure over time](image)

Dr. Sinter LAB Series SPS-515S

11/07/2017

Annika Pille annika.pille@lspm.cnrs.fr **ECerS 2017 Budapest**
Alumina ceramics

From previous work in LSPM*

Powder crystallite size: 10 nm

Powder crystallite size: 50 nm

Although our γ-alumina powder crystallite size is smaller than the commercial powder’s, the sintered ceramic has bigger grain size

Effect of green body preparation

SPS cycle: 3’ at 1450°C, 300 MPa

our alumina, no pre-pressing

$\rho = 96.6\%$

Pre-pressing with 4t for better densification leads to a tenfold increase in grain size

our alumina, pre-pressing with 4t

$\rho = 98.6\%$
XRD texture study

5° × 5° grid with 0° ≤ χ ≤ 55° and 0° ≤ φ ≤ 355°

As received from SPS

Post-annealing at 1000°C

- Mild fibrous texture aligned with SPS pressure-axis
- Crystallite shape “spherifizes” during annealing
Mullite, spinel – reactive sintering

SPS cycle: 20’ at 1450°C + 10’ at 1150°C, 100 MPa
Our alumina doped with TMES in gas phase OR in liquid phase with Mg(NO$_3$)$_2$·6H$_2$O

- Stoichiometric Al$_2$O$_3$:MgO ratio gives monophasic spinel ceramic
- Average grain size of spinel produced by reactive sintering is about 5 times larger than that of spinel produced from commercial powder via the same cycle.
Cathodoluminescence study

MgAl$_2$O$_4$ ceramics compared to a single crystal*

- 1.8 eV -> the R-lines of Cr$^{3+}$ impurity**
- 2.4 eV -> tetrahedral Mn$^{2+}$ impurity**
- 2.4 – 4 eV -> F, F$^+$ centres + complex intrinsic defects***
- 4.5-6.5 eV -> “anti-site” defects**

Conclusions

• Dense ceramics with various grain sizes and transparencies, starting from UPA
• Starting from a phase with smaller crystallite size does not insure a smaller-grained ceramic
• Pre-pressing leads to a tenfold increase in grain size
• The spinel samples need annealing in air to get rid of coloration
• Slight fiber-like texture aligned with the pressure axis of SPS, crystallites more spherical after annealing
• High inversion level for spinels and common impurities
Thank you for your attention!

annika.pille@lspm.cnrs.fr

Acknowledgements:
Université Paris 13
EUROfusion