Melt Infiltrated/textured YBa$_2$Cu$_3$O$_y$ bulks with artificially patterned holes : a new way of processing c-axis FCL meander

S. Meslin1, C. Harnois1, D. Chateigner1 and X. Chaud2 and J.G. Noudem1*

1 CRISMAT-ENSICAEN, CNRS/UMR 6508, 6 Bd Maréchal Juin, 14050 CAEN Cedex, France
2 CRETA/CNRS, 25 Av des Martyrs, 38042 Grenoble Cedex 09, France

Abstract : YBa$_2$Cu$_3$O$_y$ bulk materials were textured with artificially patterned holes namely “perforated structure”. This structure is applied to both conventional top seeded samples and melt infiltrated samples. The goal is to facilitate sample oxygenation and decrease crack formation in order to address the problem of hot spot formation in fault current limiter (FCL) applications. YBCO powder enriched with CeO$_2$ and SnO$_2$ is used for the conventional melt processing whereas doping species are not needed for infiltration techniques. As-processed samples contain mechanically patterned holes parallel to the mean c-axis of the textured domain. This makes samples easier to oxygenate and cool. The microstructure is not distorted in the vicinity of the hole. The single domain character of the sample is evidenced by XRD pole figure investigations. Meander tracks were prepared by drilling upper and lower surfaces of the samples. Hole containing samples still trap high fields, comparable with samples without holes. J_c are increased in samples with holes.

*Corresponding author : J. G. Noudem
CRISMAT Laboratory-ENSICAEN
6, Boulevard du Maréchal Juin
14050 CAEN Cédex
FRANCE

Tel : ++ 33 23 1 45 29 1
Fax : ++ 33 23 1 95 16 00
Email : noudem@ismra.fr

Preference [] Oral [] Poster